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a b s t r a c t

The percent composition of blends of biodiesel and conventional diesel from a variety of retail
sources were modeled and predicted using partial least squares (PLS) analysis applied to gas
chromatography–total-ion-current mass spectrometry (GC–TIC), gas chromatography–mass spectrom-
etry (GC–MS), comprehensive two-dimensional gas chromatography–total-ion-current mass spec-
trometry (GCxGC–TIC) and comprehensive two-dimensional gas chromatography–mass spectrometry
(GCxGC–MS) separations of the blends. In all four cases, the PLS predictions for a test set of chromatograms
were plotted versus the actual blend percent composition. The GC–TIC plot produced a best-fit line with
slope = 0.773 and y-intercept = 2.89, and the average percent error of prediction was 12.0%. The GC–MS

plot produced a best-fit line with slope = 0.864 and y-intercept = 1.72, and the average percent error
of prediction was improved to 6.89%. The GCxGC–TIC plot produced a best-fit line with slope = 0.983
and y-intercept = 0.680, and the average percent error was slightly improved to 6.16%. The GCxGC–MS
plot produced a best-fit line with slope = 0.980 and y-intercept = 0.620, and the average percent error
was 6.12%. The GCxGC models performed best presumably due to the multidimensional advantage of
higher dimensional instrumentation providing more chemical selectivity. All the PLS models used 3 latent

ompo
variables. The chemical c

. Introduction

The chemometric technique partial least squares (PLS) anal-
sis was applied to total-ion-current gas chromatography
GC–TIC) separations, gas chromatography–mass spectrome-
ry (GC–MS) separations, comprehensive two-dimensional gas
hromatography–mass spectrometry (GCxGC–MS) separations,
nd GCxGC–TIC separations of biodiesels blended with conven-
ional petroleum-based diesels, hereafter called biodiesel blends.
he biodiesel blends varied from 0% to 20% by volume in biodiesel
ontent. The purpose was to use PLS models to predict the percent
omposition of biodiesel in unknown biodiesel blends, compare
he accuracy of predictions between one-dimensional (1D), two-

imensional (2D), and three-dimensional (3D) chromatography
odels, and identify the chemical species that correlate most with

he variety of blend percent compositions using the model loadings.

∗ Corresponding author at: Department of Chemistry, Seattle Pacific University,
307 Third Avenue West, Suite 205, Seattle, WA 98119-1950, United States.
el.: +1 206 281 2102; fax: +1 206 281 2882.

E-mail address: pierck1@spu.edu (K.M. Pierce).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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nents that differentiate the blend percent compositions are reported.
© 2010 Elsevier B.V. All rights reserved.

Since computation time is generally less expensive than instru-
ment time, the theme in this experiment is similar to the theme
in high-throughput process analytical chromatography: resolution
of all components in a complex sample can indeed be sacri-
ficed for a speedier chromatographic separation if the desired
chemical information can still be objectively obtained using auto-
mated PLS computations and the multidimensional advantage. The
multidimensional advantage theorizes that chemically selective
multidimensional instrumentation should increase the chemical
information content per unit of instrument time, so it is expected
that PLS applied to 3D GCxGC–MS chromatograms will yield a
better model than PLS applied to 2D GCxGC–TIC chromatograms,
which should yield a better model than PLS applied to 2D GC–MS
chromatograms, which in turn should yield a better model than PLS
applied to 1D GC–TIC chromatograms because the higher dimen-
sional data contains more chemical information.

Commercial instrument software often does not provide the
tools for multidimensional analysis, so it is necessary to export

the data out of the commercial instrument software format and
import it into a platform such as Matlab which is capable of mul-
tidimensional analysis. In this work, the PLS model is first built in
Matlab using a training set of chromatograms of biodiesel blends
with known percent compositions. PLS works by mathematically
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To acquire GC–MS data, the biodiesel blends were injected neat
with no solvent using an Agilent 6890N GC with 5973 quadrupole
mass selective detector. The inlet was 250 ◦C, the injection volume
was 1 �L, the split ratio was 120:1 and the flow rate was a con-

Table 1
Sources of biodiesels and conventional diesels used in the training set and test set.

Source

Samples in training set actual blend percent composition (%v/v)
0 Crown Hill Pure Diesel
0 Shoreline Pure Diesel
5 Kenmore 20% mixed with Shoreline Pure Diesel
5 West Seattle 20% mixed with Shoreline Pure Diesel
8.75 Kenmore 20% mixed with Shoreline Pure Diesel
8.75 West Seattle 20% mixed with Shoreline Pure Diesel
12.5 Kenmore 20% mixed with Shoreline Pure Diesel
12.5 West Seattle 20% mixed with Shoreline Pure Diesel
12.5 Ballard 99% mixed with Shoreline Pure Diesel
16.25 West Seattle 20% mixed with Shoreline Pure Diesela

16.25 West Seattle 99% mixed with Shoreline Pure Diesel
20 Kenmore 20%
20 West Seattle 20%

Samples in test set actual blend percent composition (%v/v)
5 Downtown Seattle 5%
5 Bellevue 20% mixed with Shoreline Pure Diesel
8.75 Downtown Seattle 5% mixed with Downtown Seattle 20%
8.75 Bellevue 20% mixed with Shoreline Pure Diesel
12.5 Downtown Seattle 5% mixed with Downtown Seattle 20%
12.5 Bellevue 20% mixed with Shoreline Pure Diesel
16.25 Downtown Seattle 5% mixed with Downtown Seattle 20%
K.M. Pierce, S.P. Schale /

oading independent variables that have variations in signal inten-
ity across all of the samples which correlate with variations in
he given quantitative property, so PLS positively and negatively
oads retention times that have signals that positively or negatively
o-vary with given blend percent compositions [1–3]. To evaluate
he model, independent test set chromatograms are regressed onto
he model to yield predicted percent compositions, and the plot
f predicted percent composition versus actual percent composi-
ion should ideally have a best-fit line with slope equal to 1 and
R2 value equal to 1. The models will also be evaluated by aver-

ge percent error, where percent error is defined as the quantity
00% times the absolute value of the actual blend percent com-
osition minus predicted blend percent composition, divided by
ctual blend percent composition.

We specifically chose to study biodiesel blends because the
bility to predict retail biodiesel blend percent composition is
mportant to regulatory agencies, fuel compliance officers, and dis-
ributors of transport fuel who may be interested in monitoring
uthenticity, quality, contamination, adulteration, and accuracy of
eported blend percent compositions. Instrumental methods for
onitoring biodiesel blends have been reported using Fourier-

ransform infrared spectroscopy [4–6], near-infrared spectroscopy
7–9], mid-infrared spectroscopy [10], nuclear magnetic resonance
pectroscopy [8,11–13], radio carbon analysis [14], electrospray
onization mass spectrometry [15], liquid chromatography [16,17],
nd GCxGC with flame ionization detection [18,19]. Other reports
uantified biodiesel blends through one-dimensional gas chro-
atography [20] and GC–MS [9,21]. A PLS method was also

eported to predict blend percent compositions of light cycle oil
LCO) with diesel fuel using GC–MS with variance of prediction
qual to 0.5 for 1–20% LCO blends [22]. Of all of these methods, only
he GC methods have the resolution required to attempt to iden-
ify individual components that affect the model’s accuracy. Herein,
e report and compare PLS models built to predict biodiesel blend
ercent compositions using GC–MS and GCxGC–MS separations.
e mimicked references [6,14,15], by choosing to obtain samples
here both the biodiesels and conventional diesels originated from
ifferent fuel stations in an attempt to address this source of vari-
tion in the model. However, calibration transfer is a significant
roblem in chromatography that we have not fully addressed in this
ork, and instead we focus on comparing the multidimensional
odels to the 1D model. The higher dimensional chromatograms

hould contain more valuable chemical information that is lost dur-
ng compression into fewer dimensions.

. Experimental

The PLS algorithm and n-way n-PLS algorithm were from the
ommercial software PLS Toolbox by Eigenvector Research, Inc
Manson, WA). Both used the same SIMPLS algorithm [1,3]. PLS
as applied to the GC–TIC data and n-PLS was applied to the
C–MS, GCxGC–TIC, and GCxGC–MS data. For all of the models,
latent variables (LV) were used. To determine the number of

atent variables, models for the GC–TIC, GC–MS, and GCxGC–TIC
ata were constructed using 1 LV to 8 LV and, the number of LV that
ielded a minimum root-mean-squared error of cross-validation
RMSECV) was chosen to be 3 LV, as shown in Fig. 1 [1]. The
omputer crashed due to memory capacity issues during attempts
o do leave-one-cross-validation of the GCxGC–MS data, so to be
onsistent and to avoid over-fitting the model, 3 LV were used

or the GCxGC–MS model, as well. Cross-validation models were
uilt, whereby, one-at-a-time, each chromatogram was pulled out
f the data set, the model was rebuilt with the remaining chro-
atograms, and then that left-out chromatogram was submitted

o the model to predict that sample’s percent composition. This
Fig. 1. Plot of RMSECV for each latent variable in the GC–TIC PLS model, the GC–MS
n-PLS model, and the GCxGC–TIC n-PLS model.

was repeated for every chromatogram in the data set and yielded a
leave-one-out cross-validation plot of predicted percent composi-
tion versus actual percent composition, which should ideally have
R2 = 1.0 and RMSECV close to 0. These metrics will be reported
in Section 3 so that the 1D model can be compared to the mul-
tidimensional models to see which yield the most ideal results
and ultimately determine which method is “best” for predicting
biodiesel blends.

The biodiesel blends and conventional diesels were mixed with
each other. The source and composition of each sample is listed in
Table 1. The samples were acquired in September 2008, June 2009,
July 2009, and August 2009 from Propel stations, Valero, and Union
76. These were mixed in various combinations to yield a range of
blend percent compositions between 0% and 20% by volume. Per-
cent composition is defined as the percent, by volume, of biodiesel
in the biodiesel and conventional diesel blend. The blend percent
compositions reported at the pump are assumed to be accurate.
16.25 Bellevue 20% mixed with Shoreline Pure Diesel
20 Downtown Seattle 20%
20 Bellevue 20%

a This sample was replaced with Ballard 99% mixed with Crown Hill Pure Diesel
for GCxGC–TIC and GCxGC–MS data sets due to sample loss.
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Fig. 2. (A) GC–TIC chromatogram of a 5% biodiesel blend. (B) PLS model loadings on
LV 1 of the GC–TIC training set. (C) PLS model loadings on LV 2 (black) and LV 3 (blue)
o
L
r
t

s
u
t
s
A
C
w
t
m

i
w
i
r
0
d
f
3
d
d
3
T

1

is shown in Fig. 3A. Parent ions can be seen at high molecular
f the GC–TIC training set model are overlaid. The percent variance capture by LV 1,
V 2, and LV 3 was 67.83%, 8.87%, and 12.50%, respectively. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
he article.)

tant 0.8 mL/min. The oven started at 60 ◦C, and ramped at 3 ◦C/min
p to 288 ◦C final temperature, with a 4.4 min solvent delay for
he detector. The detector was set to scan ions 76–250 m/z at 5.6
cans/s with a threshold of 150 ion counts. The column was an
gilent HP-5MS, 30 m × 250 �m × 0.25 �m stationary phase. The
hromaTOF software with the NIST mass spectral matching library
as used to identify certain components and the reported iden-

ifications agreed among three replicate chromatograms and had
atches above 95.
To acquire the GCxGC–MS data, the biodiesel blends were

njected neat with no solvent using an Agilent 6890 LECO GCxGC
ith time-of-light mass spectrometer. The inlet was 275 ◦C, the

njection volume was 1 �L, the split ratio was 200:1 and the flow
ate was 1.0 mL/min. The main oven started at 60 ◦C, held for
.25 min, and ramped 3 ◦C/min to 290 ◦C, with a 6 s delay for the
etector. The secondary oven was set at a constant +10 ◦C offset
rom the main oven with transfer line temperature to detector set at
05 ◦C. The second dimension separation time was set at 1.2 s. The
etector was set to monitor ions 76-250 m/z at 100 spectra/s, with
etector at 1600 Volts, electron energy at −70 V, and ion source at

00 ◦C. The first column was a RTX-5MS, 20 m × 250 �m × 0.50 �m.
he second column was a RTX-200MS, 1.79 m × 180 �m × 0.20 �m.

To process the data sets that ended up being a maximum of
3 × 120 × 3890 × 105 data points, a 64-bit platform computer with
Fig. 3. (A) GC–MS chromatogram of a 5% biodiesel blend. (B) PLS positive loadings
on LV 1 of the GC–MS training set. (C) PLS negative loadings on LV 1 of the GC–MS
training set.

12 Gb RAM had to be used with Matlab-64, otherwise the com-
puter would run out of memory during PLS calculations. Each
chromatogram was normalized to the total sum of its signals.

3. Results and discussion

The 13 biodiesel blends in the training set, and the 10 test set
biodiesel blends were all submitted to GC–MS and GCxGC–TOFMS
chromatography. Each GC–TIC was obtained by summing each
observed mass spectrum in a GC–MS chromatogram into a sin-
gle scalar value, producing a 1D vector suitable for PLS analysis.
A representative GC–TIC chromatogram of a 5% biodiesel blend is
shown in Fig. 2A. The large peaks eluting near 50 min are fatty acid
methyl esters (FAMEs) that are characteristic of biodiesels [23]. A
representative 2D GC–MS chromatogram of a 5% biodiesel blend
weights for the conventional diesel’s alkane components. A rep-
resentative GCxGC–TIC chromatogram of a 5% biodiesel blend is
shown in Fig. 4A. The FAMEs elute at approximately 52 min and
are retained longer on the polar second column than many of the
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ig. 4. (A) GCxGC–TIC chromatogram of a biodiesel blend. (B) PLS positive loadings
raining set.

aturated alkanes. The GCxGC–TIC chromatograms were obtained
y summing each observed mass spectrum in a GCxGC–MS chro-
atogram into a single scalar value, producing a 2D array suitable

or PLS analysis. The 3D GCxGC–MS chromatograms were modeled
ut none are shown in a figure. In the introduction we claimed that
hemical class information may be lost with high speed/low res-
lution 1D chromatography, but it can be recovered by adding a
hemically selective dimension to the instrumentation. It should
e noted that high resolution 1D chromatography can yield clas-
ification results equivalent to 2D low resolution chromatography
hen the peak capacities are similar, but the peak capacity in our

D GC–TIC is smaller than the peak capacity in our 2D GCxGC chro-
atogram. For the GC–TIC, the total separation time was divided

y the approximate peak-width-at-base, yielding a theoretical peak
apacity of 571 peaks, although a peak-counting algorithm (devel-
ped in-house to count local maxima with signals greater than
noise threshold) counted 392 peaks actually present in the 5%

lend GC–TIC. For the GCxGC–TIC, the total separation space was
ivided by the approximate peak-area-at-base, yielding a theoret-

cal peak capacity of 2918 peaks in the same 5% blend, although
peak-counting algorithm written in Matlab counted 795 peaks

ctually present in the GCxGC–TIC. If sample complexity is deter-
ined by the number of peaks present in the chromatogram, then

he sample complexity is approximately equal among the 5–20%
lends of biodiesels. The 0% blends are missing the 3–10 FAME
eaks, so the sample complexity for the pure conventional diesel

s slightly less than the biodiesel blends, but ultimately, sample
omplexity is largely determined by the hundreds of conventional
iesel components rather than the biodiesel components [23].

The 13 training set GC–TIC chromatograms were submitted
o PLS to model the chemicals that co-varied with the known
lend percent compositions. A leave-one-out cross-validation was
erformed as a way of evaluating the robustness of the model.
he PLS cross-validation plot of this 1D data had R2 = 0.999 and
MSECV = 0.488 for 3 LV. Similarly, the 13 training set GC–MS chro-

atograms were submitted to PLS. The PLS cross-validation plot of

his 2D data had R2 = 0.997 and RMSECV = 0.376 for 3 LV.
The 10 test set GC–TIC chromatograms were regressed onto

he GC–TIC PLS model and a plot of predicted versus actual blend
ercent composition for this 1D data had a best-fit line with
1 of the GCxGC–TIC training set. (C) PLS negative loadings on LV 1 of the GCxGC–TIC

slope = 0.773, y-intercept = 2.89, and R2 = 0.998, as shown in Fig. 5A.
The average percent error was 12.0%. Considering that the expected
precision in chromatography with normalization is 1%, then the
observed 12.0% error means that uncontrolled sources of sample
variation were present, diminishing the reliability of the PLS model
for predicting accurate blend percent compositions of unknown
samples using 1D GC–TIC [24]. The PLS model yielded more accu-
rate predictions for the 10 test set GC–MS chromatograms. The
plot of predicted versus actual blend percent composition for this
2D data had a best-fit line with slope = 0.864, y-intercept = 1.72,
and R2 = 0.999, as shown in Fig. 5B. The average percent error was
improved to 6.89%.

The 10 GCxGC–TIC test set chromatograms were regressed onto
a PLS model that was built using the 13 training set GCxGC–TIC
chromatograms and a plot of predicted versus actual blend percent
composition for this 2D data had a best-fit line with slope = 0.983,
y-intercept = 0.680, and R2 = 0.980, as shown in Fig. 5C. The average
percent error was 6.16%. This could be interpreted to mean that the
GCxGC–TIC data produces a more robust model that yields more
accurate predictions than the GC–TIC data, assuming a two-fold
improvement in prediction error is significant.

When the 13 GCxGC–MS chromatograms were combined, a sin-
gle 4D variable was produced that was too big for the Matlab
memory to handle during PLS calculations, so a subset of the m/z
were chosen and extracted to make a smaller 4D variable that could
be used to build the GCxGC–MS PLS model. The subset of m/z were
chosen by summing a 3D chromatogram of a 20% biodiesel blend
in both chromatographic dimensions to yield a 1D mass spectrum
and any m/z that had a summed signal greater than 1.12 × 108 was
chosen, yielding 105 m/z, so each 3D GCxGC–MS chromatogram
was reduced from 120 × 3890 × 176 to 120 × 3890 × 105. The 10
GCxGC–MS test set chromatograms were regressed onto a PLS
model that was built using the 13 training set GCxGC–MS subset
chromatograms and a plot of predicted versus actual blend percent
composition for this 3D data had a best-fit line with slope = 0.980,

y-intercept = 0.620, and R2 = 0.977, as shown in Fig. 5D. The average
percent error was 6.12%. The GCxGC–MS data produces a robust
model that yields predictions as accurate as the GCxGC–TIC model.
In general, the GCxGC data did contain more valuable chemical
information than the GC data, which agrees with the multidimen-
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ig. 5. Predicted blend percent composition (%v/v) is plotted versus actual blend
raining set data, (B) 2D GC–MS training set data, (C) 2D GCxGC–TIC training set da

ional advantage theory. However, the third added dimension of the
CxGC–MS was not necessary because accuracy of the GCxGC–MS
odel was so similar to the accuracy of the GCxGC–TIC model. The

tandard deviation of the y-values of the best-fit line in Fig. 5D was
.9, so if variance is defined as the square of the standard devia-
ion, then the variance of prediction was 0.8. This is more than the
.5 variance reported in reference [22] for 1–20% LCO blends. To
nderstand the chemistry related to why a multidimensional sep-
ration produces a different prediction model than a 1D separation,
e look at the model loadings in the next section.

The most highly loaded variables (in terms of absolute value)
re the chemical signals that were most useful for predict-
ng blend percent compositions. In general, the model loadings
evealed that fatty acid methyl esters were most positively
oaded and higher molecular weight alkanes or substituted naph-
halenes were most negatively loaded. This is expected because

biodiesel is usually composed of a small number of FAMEs,
hile a conventional diesel is generally composed of many sat-
rated hydrocarbon families, aromatics and naphthalenes. As
he given percentage of biodiesel increases, the FAME signals
ncrease, yielding a positive correlation to the percent compo-
ition. Also, as the given percentage of biodiesel increases, the
ignals decrease for the saturated hydrocarbons and aromatics
hat are characteristic of conventional diesel, yielding a nega-
ive correlation to the percent composition. For both GC–TIC and
C–MS models, the top five most positively loaded variables on
V 1, shown in Fig. 2B and Fig. 3B, were the following FAMEs:

ethylhexadecanoate, methyl-8,11-octadecadienoate, methyl-9-

ctadecadienoate, methyl-12-octadecadienoate, and methyloc-
adecanoate. The top five most negatively loaded variables, shown
n Fig. 2B and Fig. 3C, were the following saturated straight chain
ydrocarbons: hexadecane, heptadecane, octadecane, nonadecane,
nt composition (%v/v) for the test set using PLS models built with (A) 1D GC–TIC
(D) 3D GCxGC–MS training set data.

and eicosane. The GC–MS model had heavily loaded parent ions that
were not available in the GC–TIC model, which may explain the
improvement in prediction accuracy when comparing the GC–MS
test set prediction results (Fig. 5A) to the GC–TIC test set prediction
results (Fig. 5B). We do assume we can correlate loadings on LV 1
to chemicals that are important for modeling, however, we should
point out that the models are a linear combination of LV 1, LV 2 and
LV 3. So if highly loaded peaks in LV 1 are “cancelled out” by peaks
in LV 2 or LV 3 that are highly loaded with an opposite sign, then it
diminishes the importance of the chemicals we identified as being
useful for prediction. The loadings on LV 2 and LV 3 are overlaid
and shown in Fig. 2C for the GC–TIC model.

The GCxGC–TIC model most positively loaded the follow-
ing three FAMEs shown in Fig. 4B: methylester-undecanoic
acid, methylester-octadecenoic acid, and methylester-9,12-
octadecadienoic acid. The GCxGC–TIC model most negatively
loaded the following four aromatic compounds shown in Fig. 4C:
2,3-dihydro-4-methyl-indene, 1,2,3,4-tetrahydronaphthalene,
6-methyl-1,2,3,4-tetrahydronaphthalene, and 2,7-dimethyl-
1,2,3,4-tetrahydronaphthalene. The added chemical selectivity
provided by the second chromatographic column dimension
helped resolve the aromatic compounds from the saturated alka-
nes, presumably causing the small improvement in prediction
accuracy when comparing the predictions of the GC–MS model
(Fig. 5B) to the predictions of the GCxGC models (Fig. 5C and D).

4. Conclusion
Monitoring blends of biodiesels and conventional diesels is a
research topic currently gaining popularity as responsible stew-
ardship of natural resources becomes increasingly important. We
showed that n-way PLS can be used to predict or authenti-
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ate biodiesel blend percent compositions with 6.12% error using
CxGC–MS and assuming future samples contain similar features

o the original training set.
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